En vertu de la question précédente
\vec{E_1} = E_{01} e^{i(\omega t -kz)} \vec{u}_x \,\,\,\, \vec{B_1} = \frac{E_{01}}{c} e^{i(\omega t -kz)} \vec{u}_y
\vec{E_2} = E_{02} e^{i(\omega t +kz)} \vec{u}_x \,\,\,\, \vec{B_2} = -\frac{E_{02}}{c} e^{i(\omega t +kz)} \vec{u}_y
\vec{E_3} = E_{03} e^{i(\omega t -nkz)} \vec{u}_x \,\,\,\, \vec{B_3} = \frac{nE_{03}}{c} e^{i(\omega t -nkz)} \vec{u}_y
\vec{E_4} = E_{04} e^{i(\omega t +nkz)} \vec{u}_x \,\,\,\, \vec{B_4} = -\frac{nE_{04}}{c} e^{i(\omega t +nkz)} \vec{u}_y
\vec{E_5} = E_{05} e^{i(\omega t -Nkz)} \vec{u}_x \,\,\,\, \vec{B_5} = \frac{NE_{05}}{c} e^{i(\omega t -Nkz)} \vec{u}_y
en remarquant bien que les E_{0i} peuvent être complexes.