La présence d'un champ local va causer une mise en mouvement partielle des charges liées et donc engendrer un courant.
Par exemple dans le cas de l'atome d'hydrogène le moment dipolaire vaut
où est la position de l'électron et sa charge. Si la répartition des dipôles est uniforme, avec la densité, le vecteur polarisation vaut
alors que par définition le courant associé aux charges de polarisation vaut
par conséquent
Nous pouvons vérifier que cette expression est en accord avec la loi de conservation de la charge. En effet comme
la divergence de l'expression précédente donne
ce qui vérifie bien la conservation de la charge.